
CL200

COM2-E Module Description

101

CL200

COM2-E Module Description

1070 072 267-101 (01.12) GB

© 2001

by Robert Bosch GmbH, Erbach / Germany
All rights reserved, including applications for protective rights.
Reproduction or distribution by any means subject to our prior written permission.

BOSCH Contents

Contents

		Page
1.1 1.2 1.3 1.4 1.5	Safety Instructions Intended Use Qualified Personnel Safety Markings on Components Safety Instructions in this Manual Safety Instructions for the Described Product Documentation, Software Release and Trademarks	1–1 1–1 1–2 1–3 1–4 1–5 1–7
2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.6 2.6.1 2.6.2 2.7 2.8	Hardware Front Panel Slot V.24/20 mA Interface Ethernet Interface Settings on the COM2-E Block Address of COM2-E Protocol-Specific Settings Protocol-Specific Settings Protocol-Specific Settings Configuration File Keywords Example of a Configuration File Status Display Technical Data	2-1 2-2 2-4 2-4 2-5 2-6 2-7 2-8 2-12 2-13 2-13 2-18 2-19 2-20
3	PLC Interface	3–1
4.1 4.2 4.2.1 4.2.2 4.3 4.3.1 4.3.2	R2REQ Characteristics Parameters Input Parameters Output Parameters Meaning of the Parameters in the Data Storage Area Protocol-Independent Parameters Protocol-Dependent Parameters	4–1 4–1 4–2 4–4 4–5 4–6 4–7
5 5.1 5.2 5.2.1 5.2.2	R2CON Characteristics Parameters Input Parameters Output Parameters	5–1 5–1 5–1 5–2 5–3

6	General Information Regarding BUEP-E and BUEP 6–1	P19E .
6.1	Parameters BUEP-E / BUEP19E	6–2
6.1.1	Protocol-Independent Parameters	6–3
6.1.2	Protocol-Specific Parameters	6–5
6.2	Command Description for Central Units	6–10
6.2.1	Field Commands	6–10
6.2.2	Special Commands	6–11
6.3	Error Messages R2CON	6–14
6.3.1	Parameter 3, Status / PLC Reaction R2CON	6–14
6.3.2	Parameter 4, Error Messages R2CON	6–15
6.3.3	Catalogue of Errors	6–16
6.4	Password	6–18
7	TFTP Protocol	7–1
8	Ethernet Job Listing	8–1
8.1	Client Command	8–5
8.2	Server Command	8–6
8.3	Error Messages	8–7
8.3.1	Client Error Messages	8–7
8.3.2	Server Error Messages	8–7
8.3.3	ICMP Error Messages	8–7
9	Time Characteristics	9–1
10	PLC Program Examples	10–1
10.1	Function Module	10–1
10.2	Symbol file	10–4
10.3	Job Parameters in the Data Module	10–6
A	Appendix	A-1
A.1 Δ 2	Abbreviations	A–1 Δ–2
4	INDEX	Δ_'

BOSCH Safety Instructions 1–1

1 Safety Instructions

Before you start working with COM2-E, we recommend that you thoroughly familiarize yourself with the contents of this manual. Keep this manual in a place where it is always accessible to all users.

1.1 Intended Use

This instruction manual presents a comprehensive set of instructions and information required for the standard operation of the described products.

The products described hereunder

- were developed, manufactured, tested and documented in accordance with the relevant safety standards. In standard operation, and provided that the specifications and safety instructions relating to the project phase, installation and correct operation of the product are followed, there should arise no risk of danger to personnel or property.
- are certified to be in full compliance with the requirements of the
 - EMC Directives (89/336/EEC 93/68/EEC, and 93/44/EEC)
 - Low-Voltage Directive (73/23/EEC)
 - Harmonized standards EN 50081-2 and EN 50082-2
- are designed for operation in an industrial environment (Class A emissions). The following restrictions apply:
 - No direct connection to the public low-voltage power supply is permitted.
 - Connection to the medium and/or high-voltage system must be provided via transformer.

The following applies for application within a personal residence, in business areas, on retail premises or in a small-industry setting:

- Installation in a control cabinet or housing with high shield attenuation.
- Cables that exit the screened area must be provided with filtering or screening measures.
- The user will be required to obtain a single operating license issued by the appropriate national authority or approval body. In Germany, this is the Federal Institute for Posts and Telecommunications, and/or its local branch offices.
- This is a Class A device. In a residential area, this device may cause radio interference. In such case, the user may be required to introduce suitable countermeasures, and to bear the cost of the same.

Proper transport, handling and storage, placement and installation of the product are indispensable prerequisites for its subsequent flawless service and safe operation.

1–2 Safety Instructions BOSCH

1.2 Qualified Personnel

This instruction manual is designed for specially trained personnel. The relevant requirements are based on the job specifications as outlined by the ZVEI and VDMA professional associations in Germany. Please refer to the following German-Language publication:

Weiterbildung in der Automatisierungstechnik Publishers: ZVEI and VDMA Maschinenbau Verlag Postfach 71 08 64 60498 Frankfurt/Germany

This instruction manual is specifically designed for specially trained PLC technicians. They are required to have special skills and knowledge regarding programmable logic controllers.

Programming, start and operation as well as the modification of program parameters may only be executed by specially trained personnel! This personnel must be able to recognize possible hazards that might be caused by programming and program modification, and in general by mechanical, electrical or electronical equipment.

Interventions in the hardware and software of our products not described in this instruction manual may only be performed by our skilled personnel.

Unqualified interventions in the hardware or software or non-compliance with the warnings listed in this instruction manual or indicated on the product may result in serious personal injury or damage to property.

Installation and maintenance of the products described hereunder is the exclusive domain of trained electricians as per IEV 826-09-01 (modified) who are familiar with the contents of this manual.

Trained electricians are persons of whom the following is true:

- They are capable, due to their professional training, skills and expertise, and based upon their knowledge of and familiarity with applicable technical standards, of assessing the work to be carried out, and of recognizing possible dangers.
- They possess, subsequent to several years' experience in a comparable field of endeavor, a level of knowledge and skills that may be deemed commensurate with that attainable in the course of a formal professional education.

With regard to the foregoing, please read the information about our comprehensive training program. The professional staff at our training center will be pleased to provide detailed information. You may contact the center by telephone at (+49) 6062 78-258.

BOSCH Safety Instructions 1–3

1.3 Safety Markings on Components

DANGER! High voltage!

DANGER! Corrosive battery acid!

CAUTION! Electrostatically sensitive components!

Disconnect mains power before opening!

Lug for connecting PE conductor only!

Functional earthing or low-noise earth only!

Screened conductor only!

1–4 Safety Instructions BOSCH

1.4 Safety Instructions in this Manual

DANGEROUS ELECTRICAL VOLTAGE

This symbol warns of the presence of a **dangerous electrical voltage**. Insufficient of lacking compliance with this warning can result in **personal injury**.

DANGER

This symbol is used wherever insufficient or lacking observance of this instruction can result in **personal injury**.

CAUTION

This symbol is used wherever insufficient or lacking observance of instructions can result in **damage to equipment or data files.**

BOSCH Safety Instructions 1–5

1.5 Safety Instructions for the Described Product

DANGER

Fatal injury hazard through ineffective Emergency-OFF devices! Emergency-OFF safety devices must remain effective and accessible during all operating modes of the system. The release of functional locks imposed by Emergency-OFF devices must never be allowed to cause an uncontrolled system restart!

Before restoring power to the system, test the Emergency-OFF sequence!

DANGER

Danger to persons and equipment!

Test every new program before operating the system!

DANGER

Retrofits or modifications may interfere with the safety of the products described hereunder!

The consequences may be severe personal injury or damage to equipment or the environment. Therefore, any system retrofitting or modification utilizing equipment components from other manufacturers will require express approval by Bosch.

DANGEROUS ELECTRICAL VOLTAGE

Unless described otherwise, maintenance procedures must always be carried out only while the system is isolated from the power supply. During this process, the system must be blocked to prevent an unauthorized or inadvertent restart.

If measuring or testing procedures must be carried out on the active system, these must be carried out by trained electricians.

CAUTION

Danger to the module!

Do not insert or remove the module while the controller is switched ON! This may destroy the module. Prior to inserting or removing the module, switch OFF or remove the power supply module of the controller, external power supply and signal voltage!

CAUTION

Only Bosch-approved spare parts may be used!

I–6 Safety Instructions BOSCH

CAUTION

Danger to the module!

All ESD protection measures must be observed when using the module! Prevent electrostatic discharges!

Observe the following protective measures for electrostatically endangered modules (EEM)!

- The Employees responsible for storage, transport and handling must be trained in ESD protection.
- EEMs must be stored and transported in the protective packaging specified
- Out of principle, EEMs may be handled only at special ESD work stations equipped for this particular purpose.
- Employees, work surfaces and all devices and tools that could come into contact with EEMs must be on the same potential (e.g. earthed).
- An approved earthing wrist strap must be worn. It must be connected to the work surface via a cable with integrated 1 M Ω resistor.
- EEMs may under no circumstances come into contact with objects susceptible to accumulating an electrostatic charge. Most items made of plastic belong to this category.
- When installing EEMs in or removing them from an electronic device, the power supply of the device must be switched OFF.

BOSCH Safety Instructions 1–7

1.6 Documentation, Software Release and Trademarks

Documentation

The present manual provides the user with comprehensive information about the COM2-E module within the CL200 controller.

Overview of available manuals:

Manuals	Language	Order no.
COM2-E Module Description	English	1070 072 267
R200 Module Description	English	1070 072 157
R200P Module Description	English	1070 072 162

Hexadecimal numbers are represented by a sub H (FF_H) or they are written the same way as they must be entered (16#FFFF).

Trademarks

All trademarks referring to software that is installed on Bosch products when shipped from the factory represent the property of their respective owners.

At the time of shipment from the factory, all installed software is protected by copyright. Software may therefore be duplicated only with the prior permission of the respective manufacturer or copyright owner.

 $\text{MS-DOS}^{\tiny{\circledR}}$ and Windows $^{\tiny{\intercal}}$ are registered trademarks of Microsoft Corporation.

1–8 Safety Instructions BOSCH

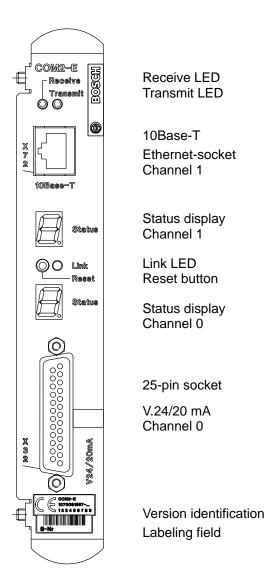
BOSCH Hardware 2–

2 Hardware

The COM2-E module is provided with a serial V.24/20 mA interface and an Ethernet interface (10Base-T) which make it possible to couple the CL200 controller with other Bosch controllers or other communication-capable devices.

Power Supply

The COM2-E does not require an external power supply. All supply voltages are provided by the CL200's power supply unit.


Compatibility

The COM2-E's hard- and software concept makes it possible to operate the COM2-E in combination with the R200 and R200P modules in the CL200 basic device.

To address the COM2-E from the PLC program, the function modules for computer interfaces are to be linked to the PLC program (R2REQ, R2CON).

2–2 Hardware BOSCH

2.1 Front Panel

Status Display

Each of the two channels on the COM2-E is provided with a status display.

- For channel 0, the lower 7-segment display is responsible (V24/20mA interface).
- For channel 1, the upper 7-segment display is responsible (Ethernet interface).

Interfaces

- The X32 interface is a V.24/20 mA interface. It is used for point to point coupling to an external device or as a diagnosis/protocol monitor for the Ethernet interface.
- The 10Base-T connector (X72) is used for the connection to the Ethernet network.

BOSCH Hardware 2-3

Reset Button

Pressing the reset button starts reinitialization of COM2-E's operating software.

- All active jobs are aborted undefined.
- All jobs are deleted from the job queue.
- STOP and CLAB requests of the module are deleted.

Link-LED

This LED indicates that the link integrity signals can be exchanged between COM2-E and the coupled partner device. This way it is possible to enable a communication between both stations.

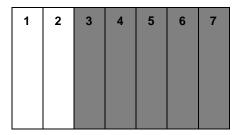
Receive/Transmit-LED

These LEDs indicate the data traffic. They are lit when messages are going out or coming in.

Identification of Version

This label identifies the revision level of the module. Changes are marked by a black point.

During power-on, the firmware version of the module is displayed on the 7-segment display. The version number reads from the upper to the lower display (dot between the two displays).


Labeling Field

The labeling field is for you, the user, to identify the module according to your plant's identification system. This e.g. might be the module's block address or the IP address.

2–4 Hardware BOSCH

2.2 Slot

A maximum of 3 intelligent modules (COM2-E, R200 or R200P) can be operated in a PLC. These modules can be inserted into slots 3 to 7 of the basic shelf.

2.3 V.24/20 mA Interface

The V.24/20 mA interface is available at channel 0. Via this interface, devices that are equipped with a V.24/20 mA interface themselves can be connected.

The following protocols can be used:

• BUEP03E Transmission protocol for free configuration

• BUEP19E Protocol for secure data transmission

• BUEP64 Transmission protocol 3964R

Tracer/Monitor

BOSCH Hardware 2-5

2.4 Ethernet Interface

The Ethernet is connected via a twisted pair cable with RJ45 connector. The in IEEE 802.3 defined terminal conditions for 10Base-T are applicable:

Network topology star

Max. transmission rate: 10 Mbit/sMax. segment length: 100 m

• 100 Ω twisted pair cable

Link monitoring

Manchester-coded data transmission

Connector style: eight-pin RJ-45

The metallic housing of the 10Base-T socket is connected via the front panel to the PLC housing or the shield, respectively. The cable shield is connected to the socket shield via the connector housing.

The line should have a cross section of 0.08 mm² to 0.34 mm², 100 Ω impedance, and 12 to 45 transpositions per meter. For this use, special cables, called Shielded Twisted Pair (STP), are available:

- STP cable category 3
- STP cable category 4
- STP cable category 5
- STP cable category 6

Increasing category numbers correspond to better cable characteristics.

We recommend the use of STP cables category 5.

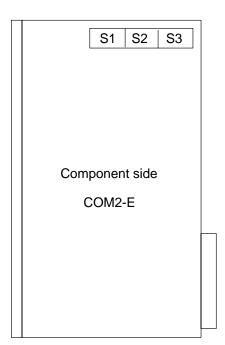
Pin Assignment

Pin No.	Explanation
1	Tx+
2	Тх-
3	Rx+
4	free
5	free
6	Rx-
7	free
8	free

2–6 Hardware BOSCH

2.5 Settings on the COM2-E

The settings must be made prior to the COM2-E's commissioning.



CAUTION

Danger to the module!

All ESD protection measures must be observed when using the module! Prevent electrostatic discharges!

DIP Switch	Explanation
S1	Protocol-specific setting channel 0
S2	Reserved
S3	Multiswitch

BOSCH Hardware 2–7

2.5.1 Block Address of COM2-E

The block address of the COM2-E is set at DIP switch S3.

The settings are made in the same way as for all other modules of the CL200 controller series.

S3								
1	2	3	4	5	6	7	8	Module Address [hex]
off	off							0x00
on	off							0x01
off	on							0x02
on	on							0x03

2–8 Hardware BOSCH

2.5.2 Protocol-Specific Settings

Protocol-specific settings for channel 0 (V.24/20mA interface) are to be located at DIP switch S1 and S3. At DIP switch S3, only the switches 7 and 8 are assigned to channel 0.

The DIP switch S2, is reserved for future extensions, and must always be switched to OFF.

2.5.3 Protocol-Specific Settings V.24/20 mA

In general, 8 information bits and 1 stop bit are transferred.

S3								
1	2	3	4	5	6	7	8	Function
							off	Control signals are not scanned
							on	Control signals are scanned
				off	off	off		38400 baud
				on	off	off		57600 baud
				off	on	off		600 baud / 10400 baud
				on	on	off		1200 baud
				off	off	on		2400 baud
				on	off	on		4800 baud
				off	on	on		9600 baud
				on	on	on		19200 baud
			off					No parity
			on					Parity active
		off						Odd parity
		on						Even parity
off	off							No protocol (tracer/monitor)
on	off							BUEP19E
off	on							BUEP03E
on	on							BUEP64

For further information regarding BUEP03E, BUEP19E, and BUEP64, please refer to the manual: R200 Computer Interface Module; order no. 1070 072 400.

S3								
1	2	3	4	5	6	7	8	Function
Module Addr.			rese	rved		Cha (
						off		BUEP19E: Priority centr. jobs
								BUEP64: Priority centr. jobs
								BUEP03E: Data length 8 bit
						on		BUEP19E: Priority decentr. jobs
								BUEP64: Priority decentr. jobs
								BUEP03E: Data length 7 bit
							off	BUEP64:Protocol end with DLE ETX
							on	BUEP64:Protocol end with DLE ETB
								BUEP03E: 10400 baud at S3 = 600 baud
		off	off	off	off			Reserved switches always OFF

V.24 Interface

The voltage levels of the signals and the assignment of the connectors are according to the guidelines "VDI Richtlinien 2880, Blatt 2" for programmable logic controllers, process and data interfaces.

Signal level, data transmission line:

● logic 1 —15 V to –3 V

• logic 0 +3 V to +15 V

Signal level, communications and control line:

active +3 V to +15 V
 passive -15 V to -3 V

Explanation	Designation	Pin No.	Signal Direction
Shield	Shield	*	
Transmitted data PLC	TxD	2	\rightarrow
Received data PLC	RxD	3	←
Reference conductor	Signal-Ground	7	
Data Set Ready	DSR	6	←
Data Terminal Ready	DTR	20	\rightarrow

^{*} The shield is connected to the metallic housing of the D-SUB connectors.

2–10 Hardware BOSCH

20 mA Interface

Signal level and assignment of the connectors comply with the guidelines: "VDI Richtlinien 2880, Blatt 2" for programmable logic controllers, process and data interfaces (limitation: max. reverse voltage 27 V). The 20 mA interfaces can be, in dependence on the pin assignment, switched to active, i.e. with source of current, or to passive.

Line Statuses

logic 1 20 mAlogic 0 no current

20 mA active

Explanation	Designation	Pin No.	Signal Direction
Shield	Shield	*	
Received data + PLC	RxD +	12	←
Received data – PLC	RxD –	24	
Transmitted data + PLC	TxD +	13	\rightarrow
Transmitted data – PLC	TxD –	25	
Data Set Ready +	DSR +	14	←
Data Set Ready -	DSR -	18	
Reader Control +	RDRCTL +	16	\rightarrow
Reader Control –	RDRCTL -	21	

^{*} The shield is connected to the metallic housing of the D-SUB connectors.

For active operation, the connections 9 (12 V in) and 10 (12 V out) must be jumpered.

20 mA passive

Explanation	Designation	Pin No.	Signal Direction
Shield	Shield	*	
Received data + PLC	RxD +	22	←
Received data – PLC	RxD –	12	
Transmitted data + PLC	TxD +	23	\rightarrow
Transmitted data – PLC	TxD -	13	
Data Set Ready +	DSR +	11	←
Data Set Ready -	DSR -	14	
Reader Control +	RDRCTL+	19	\rightarrow
Reader Control –	RDRCTL -	16	

^{*} The shield is connected to the metallic housing of the D-SUB connectors.

BOSCH Hardware 2–1^o

Length of Line

The maximum applicable length of the line is dependent on the baud rate.

For the Bosch cable 14 x 0.14 twisted, shielded, order no. 1070 910 152, the following lengths apply:

Transmission Speed [baud]	V.24 [m]	20 mA [m]
110 to 4800	15	350
9600	15	300
19200	15	150
38400	15	100
57600	15	50

It is required that the interface modules of the partner device correspond at least to those of the COM2-E.

The V.24 interface requires that there are only small differences between the potential of the transmitter and the receiver (-2 V < V $_{diff}$ < +2 V).

The transmission cable must not be laid in parallel to directly neighboring power cables.

2–12 Hardware BOSCH

2.5.4 Ethernet-Specific Settings

Ethernet Address

Each module has an impressed Ethernet address. This address is unique worldwide, and should not be altered.

The Ethernet address consists of 6 address bytes and is constructed as follows:

Fixed Part [hex]			М	odule-Specif	ic
0x00	0x60	0x34	XX	уу	ZZ

Modification of the Ethernet address is possible via the configuration file. All 6 address bytes can be overwritten.

Network problems resulting from such modification through e.g. dual addressing, etc. are the responsibility of the user.

Internet Address

The addressing of the module via Ethernet requires an Internet address (IP address). At the moment, the Internet addresses consist of 4 bytes that are normally specified in the octet notation (e.g. 142.2.26.142).

These IP addresses are given by the network administrator. In the environment of the connected LAN, the IP address may only exist once.

The IP address is stored on the COM2-E. This address can be specified via the BUEP19E protocol from the programming device or from a terminal program if the tracer on the COM2-E is switched on (cf. job listing (monitoring/tracer) COM2-E).

This means that if the COM2-E is replaced, it might be necessary to specify the IP address again.

If no IP address is specified, the upper 7-segment disply shows a 'U'.

BOSCH Hardware 2–13

2.6 Configuration File

With the configuration file, several presettings and default values on the COM2-E can be changed. The file is imported into the COM2-E module using the WinSPS editor, version 2.3 and higher, submenu 'Controls', via COM2-E, where it is then filed in a non-volatile way.

The configuration file can be created with any kind of ASCII editor. The data is checked during loading. The entries are oriented towards keywords, the parameters are divided by TABs or spaces. The semicolon is used for designation of the start of a comment.

The COM2-E module is configurated in such a way that, in general, it is not necessary to load a ProjDat.eth configuration file!

2.6.1 Keywords

Not all keywords must be specified in the configuration file. In case of missing information, the corresponding default value is valid.

Keyword	Default Value	
Retransmissiontimer	200 ms	
Retransmissioncounter	16	
Retransmissionmode	0 ; constant repeat time	
IP-Table		
IP-Lifetime	120 ; 120 seconds	
Ethernet-Overwrite	0 ; no overwrite	
Subnet-Mask	255.255.0.0	
Default-Gateway	no default address	
Password	no password	

2–14 Hardware BOSCH

Retransmissiontimer

Default: 200 ms

This time value determines the repeat time of a message.

If, e.g., a request message is not answered with a response message, the request message is repeated after the retransmission time has elapsed.

Example for an entry in the configuration file:

Retransmissiontimer: 400 ; corresponds to 400 ms

Retransmissioncounter

Default: 16

The counter determines how often a message is repeated before an error message is sent back to the controller.

Example for an entry in the configuration file:

Retransmissioncounter: 20 ; max. 20 repeats

Retransmissionmode

Default: 0 ; constant repeat time

The retransmission mode defines if the time between the repeat messages is always the same or if the length of an interval from the previous to the next repeat message is doubled.

Example for an entry in the configuration file:

Retransmissionmode: 1 ; 0 = constant time interval

; 1 = doubling of the time intervals

BOSCH Hardware 2–15

IP-Table

Normally, the IP table is not necessary. In an IP table, the references between the IP address, the module name and the Ethernet address can be established; compare to routing table.

By specifying this table the message load can be reduced, the module name on COM2-E can be determined, and the Ethernet address for this module can be defined anew.

The table is constructed in the following way:

IP Address	Module Name	Ethernet Address [hex]	Comment
123.20.2.123	Controller_2	00-60-34-00-80-44	; In the back of the ; hall to the left
123.20.2.165	Controller_8	00-60-34-00-81-77	; Main control

IP address, module name, and Ethernet address are divided by TABs or spaces, and entered in this notation and order!

The Ethernet address can be followed by a comment, divided by a semicolon.

The module name may have a maximum of 31 characters. The module name is accepted as a COM2-E name if the IP address of the system table matches the IP address of the IP table.

☐ A maximum of 64 entries is permitted!

IP-Lifetime

Default: 120 ; 120 seconds

The connection with a communication partner is set up via the IP address. The assignment between the IP and the physical Ethernet address is done via ARP messages. This assignment is not determined anew before each data exchange, but will be valid as long as the time set in the IP Lifetime. A data exchange within this timeframe retriggers this timer.

Example for an entry in the configuration file:

IP-Lifetime: 200 ; 200 seconds

2–16 Hardware BOSCH

Ethernet-Overwrite

Default: 0 ; no overwrite

The Ethernet overwrite function causes the acceptance of the IP table's Ethernet address in the module if the IP address given in the system table is identical with the address in the table.

Example:

- In the system table, the COM2-E is listed with the IP address 142.2.40.123.
- Ethernet overwrite is set to 1.
- IP table:

IP Address	Module Name	Ethernet Address [hex]	Comment
142.2.40.123	John	11-22-33-44-55-66	;to be accepted

After loading the configuration file, the Ethernet address 11-22-33-44-55-66 will be taken over by the module.

Example for an entry in the configuration file:

Ethernet-Overwrite: 1 ; 0 = No overwrite (default)

; 1 = Overwrite

The originally impressed Ethernet address is not overwritten. After deleting the configuration file, it will become visible again.

Subnet Mask

Default: 255.255.0.0

This mask is only effective in combination with the default gateway address. If a message is sent to another subnetwork, it is sent via the defined default gateway.

Example for an entry in the configuration file:

Subnet-Mask: 255.255.255.0

Default Gateway

Default: no default address

Gateway address to a subnetwork.

Example for an entry in the configuration file:

Default-Gateway: 142.2.1.100

BOSCH Hardware 2–17

Password

Default: no password

A writing access to a controller with a COM2-E module can be protected with a password. The password is only checked for communication with the PG (programming unit) or other external connections. During a COM2-E - COM2-E communication, the password is not active.

Example for an entry in the configuration file:

Password: Fred

2–18 Hardware BOSCH

2.6.2 Example of a Configuration File

```
; Configuration file COM2-E Project XY of 6-12-01.
: _______
; Comments are marked with a ';'
; Spaces and tabulators serve as delimiters.
; Communication parameters
Retransmissiontimer: 500
                          ; Time in milliseconds (default: 200 ms)
                          ; default 16
Retransmissioncounter: 8
Retransmissionmode:
                       0
                          ; 0 = constant repeat time (default)
                            ; 1 = increasing repeat time (with each
                            ; repeat, the time is doubled)
; List of communicating stations
; -----
; static part of the ARP table, i.e. the list of stations
; This table has a permanently set structure with:
; Ip-Adr. <TAB/Blank> logical name <TAB/Blank> Ethernet address ;Comment
; The logical name may have a maximum of 31 characters
; During centralized programming, the controller can be selected under this
; name.
IP-Table:
142.2.20.10 ESP001 20-af-91-23-23-66; John
142.2.20.11 ESP002 07-71-ab-c7-12-36; Fred
142.2.20.12 ESP003 13-45-66-77-54-24; Stan
142.2.20.20 COM-E_1 00-60-34-00-20-00; In the back of the hall to the left
142.2.20.21 COM-E_2 00-60-34-00-20-01; Main control
142.2.20.22 COM-E_3 00-60-34-00-20-02; Output
142.2.20.43 COM-E_4 00-60-34-00-20-03; ...
142.2.20.44 COM-E_5 00-60-34-00-20-04; ...
                            ;Overwriting of the impressed Ethernet address
Ethernet-Overwrite: 1
                            ; with entry from the IP table
; For the dynamic part of this table, the following data can be preset:
; IP lifetime determines how long a dynamic entry in the ARP table remains valid.
; A job with this address retriggers the timer.
IP-Lifetime:
                     120 ; time in seconds
; Default-Routing
; Client commands whose target IP address is located in another subnetwork
; are generally sent to the default gateway.
Subnet-Mask: 255.255.0.0
Default-Gateway:142.2.1.100
; Login
; For a controller - controller communication, a login is not required.
; If a PC or another device is connected, this communication
; reference must be first released with a password if it is
; defined in the configuration file.
; The password can be changed from the PG (programming unit).
Password:
```

BOSCH Hardware 2–19

2.7 Status Display

Each channel of the COM2-E module is provided with a status display. It shows all channel-related statuses and error messages.

These messages are assigned directly to the corresponding channel, and thus to this protocol.

Lower Display	Upper Display	Explanation
0 to 3	Н	Hardware error
4	Н	No Ethernet address
5	Н	Reserved
*	0 to F	Faulty jobs channel 1 (Ethernet)
0 to F	*	Faulty jobs channel 0 (V.24/20 mA)
Р	*	No protocol set for channel 0 (monitoring is possible)
	*	Job listing (monitoring/tracer) on
. ,	*	Error listing on
·'	*	Data output with job listing
<u>.</u> .,	*	Data output with error listing
*	U	No IP address set
*	n	No configuration file loaded
*		Centralized job runs at channel 1
	*	Centralized job runs at channel 0
0	С	Software error: stack underflow
1	С	Software error: stack overflow
2	С	Software error: odd word address, opcode error
3	С	Software error: undefined interrupt
4	С	Software error: system stack overflow
5	С	Software error: system stack underflow
6	С	Software error: user stack overflow
7	С	Software error: user stack underflow
8	С	Software error: user stack error
9	С	Software error: illegal task status
*	С	Reserved
0 to F	off	Hangman, with output of a 3-digit string

2–20 Hardware BOSCH

2.8 Technical Data

Technical Data	COM2-E	
Interfaces	 V.24/20 mA as per guideline "VDI 2880 Blatt 2" 20mA interface is electrically isolated 	
Baudrates V.24/20 mA interface	600 to 57600 bd	
Current uptake internally		
5V voltage supply	500 mA typical	
+12V ISO voltage supply	70 mA + 20 mA per active current loop	
Resistance against conducted interferences	As per EN 61 131-2	
Max. number COM2-E per controller	3	
Ambient temperature range	0 to +55 °C	
Storage temperature range	−25 to +70 °C	
Width	1 slot	
Weight	300 g	
Protection degree	Protection degree IP20 as per DIN VDE 0470-1, installed in housing	
Place and way of installation	The COM2-E can, if inserted in a card rack, be installed in a control cabinet horizontally or vertically (if the ambient temperature is reduced to 40° C).	

BOSCH PLC Interface 3–7

3 PLC Interface

The PLC interface is the access to communication, and is realized by means of the following function modules:

- R2REQ
- R2CON

The PLC interface enables the user to allocate a job to the COM2-E; this is also called 'client characteristics of the CL200'.

The function modules do not offer a job monitoring function (time-out). Job monitoring is provided by the firmware of COM2-E.

If COM2-E is purely operated as a server, function modules are not required.

3–2 PLC Interface BOSCH

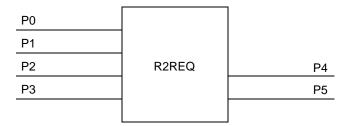
Notes:

BOSCH R2REQ 4-1

4 R2REQ

4.1 Characteristics

Characteristics	R2REQ
Module name	R2REQ
Number of parameters	6
Reserved markers	none


With the request module, the user passes the parameters which are necessary for the execution of the protocol activity to the corresponding communication task.

The request enters the job in the request job queue where a parameter structure is used together with the output data as a transfer parameter.

The request module writes a command into the communication module's job queue, which contains the information where the parameters for a communication job can be found. Afterwards, the communication module takes the relevant communication job from the ZE200 or any other control processor, which it then starts to execute.

4.2 Parameters

The function module R2REQ has four input and two output parameters.

4–2 R2REQ BOSCH

4.2.1 Input Parameters

P0

Parameter	Attribute	Description
P0	W	Data type

This parameter determines the type of a data area. Here, for each job, a data storage area of 16 words is reserved for the protocol-specific parameters.

Possible data storage areas are:

- Data module 44_H
- Data buffer 64_H
- Data field 43_H

The user must always reserve 16 words per job for job-specific parameters.

P1

Parameter	Attribute	Description
P1	W	Data type attribute

If a data module is determined by P0 as a data storage area, P1 indicates the data module number. In other cases, P1 is meaningless, and should be reserved with 16#FFFF.

Applicable values are:

- 0 to 511
- 16#FFFF

P2

Parameter	Attribute	Description
P2	W	Byte offset

This is the location where the start address for the job parameters in the selected data storage area is determined.

BOSCH R2REQ 4–3

P3

Parameter	Attribute	Description
P3	W	Job bit bar ABL

Each of the 16 bits of this parameter represents a reference to a block of job parameters located in the data storage area determined by P0 to P2. Bit 0 of P3 thus refers to the 0. job parameter block, and bit 15 refers to the 15. job parameter block in the determined data storage area.

Setting a bit in P3 initiates the start of the job which is described in the corresponding job parameter block. If several bits are set contemporarily, the corresponding jobs are passed to the COM2-E in the same cycle.

One single execution of the R2REQ with set job bits already starts all those selected jobs. The job bits must then be reset using the application program.

4–4 R2REQ BOSCH

4.2.2 Output Parameters

Ρ4

Parameter	Attribute	Description
P4	W	Error message

This is where basic status and error codes that are recognized by the R2REQ during job allocation are entered:

- The low byte of P4 then contains the status or error code;
- The high byte contains a coded recommendation for a reaction hereto.

	High Byte		Low Byte	
Code [hex]	PLC Reaction	Code [hex]	Error Code	
00	No error, correct call	00	No error, correct call	
01	Repeat R2REQ call	01	The parameter P3 ABL (Job bit bar) is zero	
02	Change PLC program	02	The declared data module is not available	
03	Change protocol parameter	03	The declared data module is too short	
04		04	The declared byte offset is not valid	
05	The function module R2REQ must be executed again			
06	The function module R2CON must be executed again	06		
07	Select protocol on RSS	07		
		08	P0 invalid	

Further error messages that are recognized by the R2REQ during the start of the job are put into the first word of the corresponding job block.

P5

Parameter	Attribute	Description
P5	W	Result bit bar EBL

This is where the user is informed about whether errors have been recognized during job allocation. Each result bit has been assigned a job. The assignment corresponds to the one of the P3 input parameter. A set result bit indicates that the job which has been addressed with the same bit number in P3 could not be allocated. In addition, a detailed error code is output in the first word of the relevant job block.

BOSCH R2REQ 4–5

4.3 Meaning of the Parameters in the Data Storage Area

For each job, a parameter field of 16 words must be reserved in the data field (DF), the data buffer (DB), or the data module (DM).

The address and the offset of this data storage area is determined with the parameters P0 to P2 of the R2REQ.

Each parameter field will be assigned a bit in the ABL job bit bar and a bit in the EBL result bit bar, starting at bit 0.

Below, you find an example of the corresponding data storage area if the parameter P2 (offset) has the value 0:

Job Bit of the ABL	Corresponding Data Storage Area	Byte Addresses
0	DW0 to DW15	0 to 31
1	DW16 to DW31	32 to 63
2	DW32 to DW47	64 to 95
3	DW48 to DW63	96 to 127
4	DW64 to DW79	128 to 159
5	DW80 to DW95	160 to 191
6	DW96 to DW111	192 to 223
7	DW112 to DW127	224 to 255
8	DW128 to DW143	256 to 287
9	DW144 to DW159	288 to 319
10	DW160 to DW175	320 to 351
11	DW176 to DW191	352 to 383
12	DW192 to DW207	384 to 415
13	DW208 to DW223	416 to 447
14	DW224 to DW239	448 to 479
15	DW240 to DW255	480 to 511

The maximally 16 job parameters are distinguished in two groups:

- Protocol-independent parameters
 Their contents are always the same, no matter which protocol or which service is addressed with the subsequent parameters.
- Protocol-dependent parameters
 These parameters are different in all protocols or services.

4–6 R2REQ BOSCH

4.3.1 Protocol-Independent Parameters

Data Word	Contents		
	High Byte	Low Byte	
DW0	PLC reaction	Error code	
DW1	RSS number	Channel number	
DW2	Job ni	umber	

DW₀

The data word 0 sends the result of the job back. This is where the result of the job is passed over after each R2REQ module call.

The result word differs between high byte (PLC reaction) and low byte (error code).

	High Byte	Low Byte	
Code [hex]	PLC Reaction	Code [hex]	Error Code
00	Job has been passed to RSS without error	00	Job has been passed to RSS without error
01		01	Job is already being processed
02	Change PLC program	02	Job is in queue
03	Change protocol parameter	03	Job is acknowledged but not yet confirmed
04		04	Wrong channel number
05	Execute R2REQ again	05	Wrong RSS number
06	Execute R2CON again	06	Wrong job number
		07	Abortion of job not possible
		08	No free job number on the RSS
		20	RSS not equipped
		30	Communication error between ZE200 and COM2-E
		90	No protocol for selected channel on the COM2-E

DW1

In this word it is specified on which COM2-E and via which channel this job should be processed.

The RSS number is entered in the high byte of this word. The RSS number 0...3 corresponds to the IBG number of the DIP switch position (S3).

The channel number indicates via which interface of the module (0 or 1) the job is supposed to be processed.

DW2

The computer interfaces of the CL200 make a parallel acceptance of up to 16 jobs possible. After that, processing of the jobs is done sequentially. By indicating the job number, the jobs can be distinguished. Another job with the same job number can only be started when the old one is finished. Such an attempt during a running job will be rejected by the R2REQ with an error message.

BOSCH R2REQ 4-7

Starting more than one centralized job with different job numbers in a PLC cycle though is possible.

The COM2-E can process up to 16 jobs at the same time. To do so, the COM-E is provided with 16 job channels. The job numbers 0 to 15 are assigned directly to the job channels. Jobs with bigger job numbers seek the next free job channel on the COM2-E. This is the reason why the numbers 0 to 15 should not be mixed with higher job numbers because jobs could be rejected in spite of free channels.

The job numbers can accept a value ranging from 16#0000 to 16#7FFF.

The 16. bit of the job number has the purpose to delete those jobs from the job queue that have been passed to the computer interface where they are pending for processing.

The job numbers 12 to 15 are reserved for high-priority jobs. Such an indication on the parameter has the effect that this parameter is given high priority and that it is processed accordingly.

The following processing is executed sequentially according to priority.

- If it is not necessary to prioritize jobs, all jobs should be assigned different job numbers. These job numbers should be higher than 15.
- Jobs cannot be sent in parallel to a communication partner!

4.3.2 Protocol-Dependent Parameters

The protocol-dependent parameters are described in the following chapters.

4–8 R2REQ BOSCH

Notes:

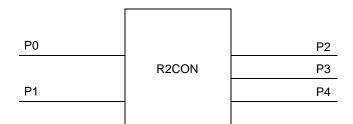
BOSCH R2CON 5–1

5 R2CON

5.1 Characteristics

Characteristics	R2CON
Module name	R2CON
Number of parameters	5
Reserved markers	none

The function module R2CON (confirmation) controls centralized jobs. It is its task to send information back to the user during processing as well as after the finished job. To do so, it takes the status and the error word from the job table and outputs this information to the address that the user has indicated as the parameter.


With R2CON only one job per call or all error-free and one faulty job can be acknowledged. The R2CON forwards the status and the error word from the job table to the PLC program. If all error-free jobs are acknowledged, the status and the error word only contain the information about the one applicable faulty job.

The R2CON must acknowledge all jobs that have been allocated by the R2REQ and the results of the single jobs are read out.

Only after the acknowledgement is read out, a new job can be started with this job number.

5.2 Parameters

The function module R2CON is provided with two input and three output parameters.

5–2 R2CON BOSCH

5.2.1 Input Parameters

P0

Parameter	Attribute	Description
P0	W	RSS and channel number

At this parameter, the RSS and the channel number on which the corresponding job was executed, are set.

P1

Parameter	Attribute	Description	
P1	W	Job number (16#0000 to 16#7FFF, 16#FFFE or 16#FFFF)	

Valid entries are:

- Job numbers from 16#0000 to 16#7FFF or
- the wildcards 16#FFFF and 16#FFFE

By indicating a job number 16#0000 to 16#7FFF, the user selects a specific job for which he wants to get an acknowledgement. This way, a specific job can be controlled.

The given job number is mirrored in the P2 output parameter.

If the 16#FFFE wildcard is specified as a job number, the R2CON function module acknowledges all jobs of the interface named by P0 that have been finished without any error up to this moment.

If additional jobs have been finished with errors, the R2CON acknowledges the faulty job with the highest job number and sends its status and error codes in the output parameters back. Other possible faulty jobs are not acknowledged by this R2CON call.

If no job is finished, the value 16#FFFF is returned to the output parameter P2.

If only error-free jobs are finished, all of them are acknowledged and the value 16#FFFE is returned to the output parameter P2.

If the wildcard 16#FFFF is given in the P1 parameter, the R2CON acknowledges the job that has been processed by the communication module, but whose acknowledgement has not yet been received. If this is applicable to more than one job, the one with the highest job number will be acknowledged. Its job number will then be entered in the output parameter P2. All other jobs will not be acknowledged.

BOSCH R2CON 5-3

5.2.2 Output Parameters

P2

Parameter	Attribute	Description
P2	W	Job number

Into this parameter, R2CON writes the number of that job whose status and error codes are available in the P3 and P4 output parameters.

If an explicit job number has been specified in P1, it will be mirrored in P2.

If after the parameterization with P1 = 16#FFFF no job is finished, the value 16#FFFF will be returned to P2 as a job number.

If after the parameterization of P1 = 16#FFFE no faulty job, but one or more jobs without error message are finished, the value 16#FFFE will be returned to P2.

P3

Parameter	Attribute	Description	
P3	W	Status / PLC reaction	

In this word, the current job status is output with each execution of R2CON. The current job status is indicated in the high byte of this word.

The low byte of P3 provides a code that recommends to the user a suitable measure in case of an error (PLC reaction). This code becomes valid after the job has been finished.

	High Byte		Low Byte	
Code [hex]	Job Status	Code [hex]	PLC Reaction	
00	Job is finished (terminated) without error	00	Error-free operation	
01		01	Repeat call	
02	Job is in the queue of the RSS	02	Change PLC program, program error	
03	Job is finished with error	03	Check and change job parameter	
04	No job with this job number is being processed	04		
		05	Execute R2REQ function module again	
		06	Execute R2CON function module again	
		0A	Check R2CON call parameters	
		10	Repeat call, has been interrupted by PLC program or by reset button	
		20	Error free call, read process with reduced data length	

5–4 R2CON BOSCH

P4

Parameter	Attribute	Description
P4	W	Error message

In case of an error, i.e. high byte of $P3 = 03_H$, the detailed error code is located in P4. In general, the evaluation of this code is only required during commissioning or in case of service.

The error message is available for one PLC cycle only.

For detailed error descriptions see chapter 6.3.3.

6 General Information Regarding BUEP-E and BUEP19E

BUEP-E is the name for a communication protocol via Ethernet-LANs that, with regard to the user interface and with the exception of the IP address and the error codes, is identical to the BUEP19E protocol.

The BUEP-E protocol can be processed with the COM2-E module on channel 1. It transmits data between a COM2-E module and another network node. The other node is determined by its internet address.

The parameters of the function modules are equal for all communication modules (R200, R200P, COM2-E). They are available in the R200 or R200P description, respectively (see chapter 1.6).

The protocol parameters of BUEP19E and BUEP-E are different from each other only with regard to the parameter words PW14 and PW15 where the internet address of the communication partner must be specified.

The abbreviations AST and PST that will appear in this description more often have the following meaning:

AST

Requesting Station, Client. It describes the communication partner that starts the protocol job.

PST

Peripheral Station, Server. It describes the communication partner that reacts to a received protocol job.

6.1 Parameters BUEP-E / BUEP19E

The job parameters correspond to the parameters as they are defined for BUEP19E. In addition to this structure, the internet address of the PST module is entered in the PW14 and PW15 parameter.

Parameter	Contents		
Word	High Byte	Low Byte	
PW1	PLC reaction	Error code	
PW2	RSS number	Channel number	
PW3	Job nu	umber	
PW4	Type of command: E/A	Type of operand: Byte/Word	
PW5	Command code: AST	Command code: PST	
PW6	Command attribute AST		
PW7	Address AST high part (ZS block address)		
PW8	Address AST low part		
PW9	Command attribute PST		
PW10	Address PST high part (ZS block address)		
PW11	Address PST low part		
PW12	Amount of data corresponds to type of operand		
PW13	Process coordination point	Field coordination point	
PW14	Internet address high part		
PW15	Internet address low part		
PW16	Reserved		

6.1.1 Protocol-Independent Parameters

Job activation of the protocol-independent parameter is done via the R2REQ module.

PW1

	Parameter Word	Attribute	Description
ſ	PW1	W	Result of the job

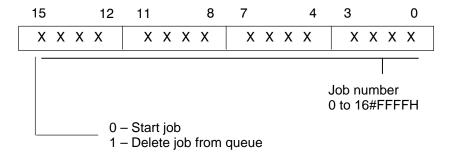
This is where after each module call the error message is passed over. The low byte contains the error code and the high byte the proposed PLC reaction.

	High Byte		Low Byte
Code [hex]	PLC reaction	Code [hex]	Error code
00	Job has been passed to RSS without error	00	Job has been passed to RSS without error
01	Call R5REQ again	01	Job is already being processed
02	Change PLC program	02	Job is in queue
03	Change protocol parameter	03	Job is acknowledged, but not yet confirmed
04	Execute R5INIT again	04	Wrong channel number
05	Execute R5REQ again	05	Wrong RSS number
06	Execute R5CON again	06	Wrong job number
07	Reload V.24 protocol	07	Abortion of job not possible
08	Check system configuration	08	No free job number on the RSS
		10	RSS 0 not initialized
		11	RSS 1 not initialized
		12	RSS 2 not initialized
		13	RSS 3 not initialized
		14	RSS 4 not initialized
		20	RSS 0 not listed in SK table
		21	RSS 1 not listed in SK table
		22	RSS 2 not listed in SK table
		23	RSS 3 not listed in SK table
		24	RSS 4 not listed in SK table
		30	Communication error on the RSS
		31	Communication error on the ZS
		92	Invalid command parameter
		D0	No protocol for channel 0 (V24 channel) loaded
		D1	Job queue is full

PW2

Parameter Word	Attribute	Description	
PW2	W	RSS and channel number	

This word contains the information on which COM2-E and via which channel this job is supposed to be processed.


High Byte	Low Byte
RSS number	Channel number

PW3

Parameter Word	Attribute	Description
PW3	W	Job number

At the computer interfaces of the CL200, it is possible to start up to 16 jobs in parallel. By indicating the job number, the jobs can be distinguished. Another job with the same job number can only be started when the old one is finished. Such an attempt during a running job will be rejected by the R2REQ with an error message.

Starting more than one centralized job with different job numbers in a PLC cycle though is possible.

The job numbers 12 to 15 are reserved for high-priority jobs. Such an indication on the parameter has the effect that this parameter is given high priority and that it is processed accordingly.

6.1.2 Protocol-Specific Parameters

The protocol-specific parameters parameterize the data traffic through BUEP-E for AST and PST. Below, the parameters are going to be explained separately.

Type of Command / Type of Operand

Parameter	Contents		
Word	High Byte	Low Byte	
PW4	Type of command	Type of operand	
Example	41 _H	01 _H	
	Output	Word	

Type of Command

This parameter determines the command type of the job. Two types can be distinguished:

- E (45_H) Input in the AST
- A (41_H) Output from the AST

The direction of the jobs always refers to the AST, so that an output job (41_H \rightarrow A) transmits data from the AST to the PST and an input job (45_H \rightarrow E) transmits data from the PST to the AST.

A job which is started with a differing command type results in the abortion of the job with a corresponding error message.

Type of Operand

The low byte of the parameter describes the type of operand of the job. According to which AST command code is applicable, eight different operand types can be used:

Code [hex]	Data Type	Number in Bytes
00	Byte	1
01	Word	2
02	Double word	4
03	Quad word	8
04	Byte mask	2
05	Word mask	4
06	Double word mask	8
07	Quad word mask	16

When selecting the operands, please check if they are supported by the PST:

- Masks can only be written
- The number of data in the masks always has to be 1 (cf. DW12)
- The low part of the mask contains the set bits, the high part contains the reset bits
- Set bits have priority over reset bits.

Command Codes AST / PST

Parameter	Contents		
Word	High Byte	Low Byte	
PW5	Command code AST	Command code PST	
Example	44 _H	44 _H	
	Data module	Data module	

The command code (Hex-code of the command) of the AST is specified in the high byte of this parameter, and the command code of the PST is specified in its low byte.

Command Attribute AST

Parameter Word	Contents	
PW6	Command attribute AST	
Example	17 _H	
	Data module 23	

Address AST High Part

Parameter Word	Contents	
PW7	Address AST high part	
Example	10 _H	
	ZS 2	

In the PW7 parameter word, the block address of the module, to which the AST command is referred, is specified.

Address AST Low Part

Parameter Word	Contents	
PW8	Address AST low part	
Example	32 _H	
	50 bytes	

In the low part of the AST address, the byte address (offset) of the used command is specified.

Command Attribute PST

Parameter Word	Contents	
PW9	Command attribute PST	
Example	A _H	
	Data module 10	

Address PST High Part

Parameter Word	Contents	
PW10	Address PST high part	
Example	F0 _H	
	ZS400	

In this parameter, the block address of the module to which the PST command is referred, is specified.

Address PST Low Part

Parameter Word	Contents	
PW11	Address PST low part	
Example	46 _H	
	70 bytes	

In the low part of the PST address, the byte address (offset) of the used command is specified.

Amount of Data

Parameter Word	Contents	
PW12	Amount of data (in data types) according to type of operand	
Example	28 _H	
	Amount = 40	

In this parameter, it is specified how much data – in relation to the operand type – has to be transferred.

If the operand type 'mask' is used, the amount of data must be set to 1. Then, the double length (setting mask and resetting mask) of the type that is specified in the mask identifier (e.g. the word mask) is always transmitted in the following order: low part, high part.

Example:

Parameter Word	PW11	Number in Bytes
Byte	3	3
Word	7	14
Double word	2	8
Quad word	5	40
Byte mask	1	2
Word mask	1	4
Double word mask	1	8
Quad word mask	1	16

Coordination

Parameter Word	Contents	
	High Byte	Low Byte
PW13	Process coordination point	Field coordination marker
Example	05 _H	FF _H
	EP or STOP	No coordination marker

The parameter coordination is composed of a field coordination marker (low byte) and a process coordination point (high byte).

It is the coordination markers' task to coordinate the execution of an instruction on the PST. It is executed only if the corresponding coordination event is 'true'; for the CL200, this means, that you must be in the process coordination point or that the field coordination marker must be set to 1; the same is applicable to other controllers.

Controller Type CL200 as PST

The CL200 only makes use of the process coordination marker (AKM). The field coordination marker (FKM) has to be set to FF_H .

The AKMs are set as follows:

- 00_H System STOP status
- 01_H System RUN status
- 05_H EP or STOP
- 07_H OM1 or STOP
- FF_H No process coordination

Internet Address High Part

Parameter Word	Contents	
	High Byte	Low Byte
PW14	Byte 1	Byte 2
Example	2 _H	8E _H
	2.	142.

In this parameter, the high part of the PST's Internet address is specified. This parameter must be considered with parameter PW15.

Internet Address Low Part

Parameter	Contents	
Word	High Byte	Low Byte
PW15	Byte 1	Byte 2
Example	80 _H	1A _H
	128.	26.

In this parameter, the low part of the PST's Internet address is specified. This parameter must be observed with parameter PW14.

Example: Internet address 142.2.26.128 \rightarrow 8E021A80_H

The addresses are divided into classes: Class A, Class B, Class C, Class D, and Class E. These addresses always form a 32 bit value which must be filed on these parameter bytes using the 'big-endian' format.

Please use the 'ISTRING' format for address input in the data module!

ISTRING 142.2.28.17

6.2 Command Description for Central Units

It is distinguished between field commands and special commands.

6.2.1 Field Commands

Data Field 43_H

Command	Data Field
Command code	43 _H
Command attribute	FFFFH
Address high part	ZS block address
Address low part	Byte address 0 to 8k
Number of data	max. 1200 bytes
Type of operand	Byte, Word, DWord, Byte mask, Word mask

Data Module without Header 44_H

Command	Data Module without Header
Command code	44 _H
Command attribute	DM number 0 to 255
Address high part	ZS block address
Address low part	Byte address 0 to 511
Number of data	max. 512 bytes
Type of operand	all

Marker 4D_H

Command	Marker
Command code	4D _H
Command attribute	0
Address high part	ZS block address
Address low part	Byte address 0 to 255
Number of data	max. 256 bytes
Type of operand	all

Data Buffer 64_H

Command	Data Buffer
Command code	64 _H
Command attribute	0
Address high part	Block address
Address low part	Byte address 0 to 511
Number of data	max. 512 bytes
Type of operand	all

6.2.2 **Special Commands**

Identification Command 76_H

F This special command is allowed anly as PST command.

Command	Identification Command
Command type	E
Command code	76 _H
Command attribute	Control code
Address high part	0
Address low part	0
Type of operand	0

Description of the control codes:

High Byte							Low Byte	
7	6	5	4	3	2	1	0	Identification number

Identification number other than FF_H

Bit 0	0	Without identification code
	1	With identification code
Bit 4	0	Take over identification number
	1	Do not take over identification number
Bit 5 to 7	0	Reserved

Description of the identification codes:

Device identification	Word	CL200	16#0100
Type identification	Word	COM2-E	16#0030
SW version	Byte	Binary code	
HW version	Byte	Binary code	
Module block address	Word		

Read PLC Operating Mode 7A_H

Command	Identification Command
Type of command	E
Command code	7A _H
Command attribute	0
Address high part	ZS/SK block address
Address low part	0
Type of operand	0

The command provides 1 word (= 2 bytes) status code.

Only permitted as PST command!

Description of the status code:

High Byte				Low	Byte			
0	7	6	5	4	3	2	1	0

Status code of CL200:

Bit 0	0	Module in RUN
	1	Module in STOP
Bit 1	0	Cold start flag reset
	1	Cold start flag set
Bit 2	0	Outputs disabled
	1	Outputs enabled
Bit 8	0	Firmware available
	1	Firmware missing
Bit 9	0	Loading of load firmware possible – boot mode
	1	Loading of load firmware blocked

6.3 Error Messages R2CON

The BUEP-E protocol creates error information that is divided into three areas:

- PLC reaction (byte)
- Error class (byte)
- Error code (byte)

The error information is filed in the feedback parameter of the R2CON in the following order:

6.3.1 Parameter 3, Status / PLC Reaction R2CON

	High Byte		Low Byte
Code [hex]	Job Status	Code [hex]	PLC Reaction
00	Job is finished (completed) without error	00	Operation without error
01	Job on the RSS is being processed	01	Repeat call of FM R2CON
02	Job in queue of RSS	02	Change PLC program
03	Job is finished with error	03	Check and change job parameter
04	No job with this job number is being processed	04	
		05	Process FM R2REQ again
		06	Process FM R2CON again
		50	Undefined error code, reaction not possible

Parameter 4, Error Messages R2CON 6.3.2

High Byte	Low Byte
Error class	Error code

The error class provides a notice regarding the generation point of the error information. The following declarations have been made:

Error Class [hex]	Explanation
00	Error-free
30	System bus communication between ZS and COM2-E
33	Job execution AST (= on the COM2-E)
34	Protocol processing on the COM2-E
40	Job execution PST (error byte 1)
41	Job execution PST (error byte 2; module-specific)
FF	Error message of the function modules

6.3.3 Catalogue of Errors

The PW column contains the parameter which has probably caused the error.

Error Information [hex]				Explanation
Reaction	Class	Code	PW	
00	00	00		Error-free job

Error during command execution on one's own AST module

Error Information [hex]				Explanation
Reaction	Class	Code	PW	
01	30	21		RUN error. The module is in the RUN state. The specified command cannot be executed, AST
01	30	22		Change of operating mode not possible, AST
03	30	23	4, 5	AST field access not permitted; the desired access (read/write/bit) is not applicable for this field.
01	30	24		AST field protection active; at the moment, the desired field is reserved by another position
01	30	25		Timer disabled; actual time values can only be changed when time is running
03	30	26	6	AST module number too large; larger than the allowed maximum value
03	30	27	6	AST data module not available, in the application program
03	30	28	8, 12	AST data module too small, in the application program
03	30	2B	Data	Error during writing to the system clock
01	30	E0 to FF		Reserved for system bus error
01	33	02		Memory access error
03	33	03	4	Wrong memory type; e.g. writing on EPROM memory
03	33	10	7	No module exists for the specified AST block address
03	33	18	5	Unsupported command code; unequal to D/DB/DF/M
03	33	19	4	Type of command neither E nor A
03	33	20	5	AST command code undefined
03	33	3A	4, 8	Wrong address orientation, e.g. writing a word on odd addresses
03	33	3B	8	Invalid address range
03	33	3C	e.g. 6	Invalid parameter
03	33	63		Buffer overflow, amount of data too much
01	34	05		Server does not respond; Time-out
01	34	06		Server not found; no ARP
03	34	07	14, 15	No server found for specified IP address

Error during command execution on the partner module PST

Error Information [hex]				Explanation
Reaction	Class	Code	PW	
01	40	02		Memory access error
03	40	03	4	Wrong memory type, e.g. write access on EPROM
01	40	05		Internal error during processing of the command on the PST
03	40	10	10	No module exists for the specified PST block address
03	40	20	5	PST command code unknown
03	40	23	13	Invalid coordination marker on the PST
03	40	26	12	Block length error
03	40	3A	4, 11	Wrong address orientation, e.g. writing a word on odd addresses
03	40	3B	11	Invalid address range
03	40	3C	9	Invalid parameter
03	40	3D	4	Invalid type of operand
03	40	63		Buffer overflow; data length is greater than the available memory of 200 _H bytes.
03	40	D2	13	Coordination marker disabled.
01	40	xy		Module-specific error.
01	41	20		STOP error; the module is in the STOP state. The specified command cannot be executed.
01	41	21		RUN error; command cannot be executed in RUN.
03	41	23	4, 5	Field access not allowed; the desired access (read/write/bit) is not applicable for this field.
01	41	24		Field protection active; at the moment, the desired field is reserved by another position.
01	41	25		Timer disabled; actual time values can only be changed when time is running.
03	41	26	9	Module number too high; higher than the allowed maximum value.
03	41	27	9	Data module not available, in the PST.
03	41	28	11	Data module too small, in the PST.
03	41	2B	Data	Error during writing on the system clock.
01	41	xy		Module-specific error.

6.4 Password

BUEP-E enables several clients to access the controller via the COM2-E module. This can be preferred in many cases, but it can also lead to problems. Therefore, a password function is provided for protection.

The default password is: BoschPlcSystems

The PG knows this password and tries to log in automatically. If the password has not been altered, the programmer will not even notice that a password exists. If the password has been changed, communication with the controller in the PG is only possible after correct password confirmation. The password can be altered via the configuration file or the programming unit.

The password verification is only active for writing commands and/or outputs (A) into the controller.

A password can only be reset if the reset button on the relevant COM2-E module is pushed during switch-on of the controller.

BOSCH TFTP Protocol 7–7

7 TFTP Protocol

In addition to the BUEP-E communication protocol, the TFTP protocol (Trivial File Transfer Protocol) is realized on the module, specification according to RFC 782 of 1992.

It provides a PC or a Unix computer with a simple possibility of communicating with the controller. The controller can read data fields of up to 510 bytes. Bigger fields are not supported. Writing into the data fields is not allowed either because of data security reasons.

The controller and the corresponding data fields are interpreted as a file system and can be read out by the COM2-E module under the corresponding file name.

Addressing of Operands / File system

<Type of Controller> <Type of Operand> <Operand Offset> <Amount of Operands>

Type of Controller:

CL50 CL500 ZS0
CL51 CL500 ZS1
CL52 CL500 ZS2
CL53 CL500 ZS3
CL4 CL400

Type of Operand:

I Input
O Output
M Marker
D Data word
DF Data field
DM Data module

Operand Offset:

• From this decimal number on, the data is read in.

Amount of Operands:

L Initial identifier of amount of operands

Decimal number with the data amount 0 to 510.

Special case:

 In case of data words, the data module must be specified after the type of the controller.

Examples:

CL4M6L20 CL400, starting at marker 6, 20 bytes
 CL51DF100L200 CL500/ZS1, starting at data field 100, 200 bytes
 CL4DM0D0L510 CL400, data module 0, starting at data word 0, 510 bytes

7–2 TFTP Protocol BOSCH

Call from the PC

TFTP <Host> GET <Source> [<Destination>]

Example:

TFTP 142.24.26.129 GET CL4DM0D0L510 DBAU0

The DBAU0 file is where the contents of the data module 0 are filed.

Error Messages

Illegal TFTP commands produce the error string:

• Illegal TFTP operation

Wrong source operands/source file coding produces:

• File not found

On the protocol level, these errors are signaled by ICMP messages.

A wrong host address or a COM2-E module that is momentarily not addressable produces, after 26 seconds, the error string:

Time-out

In addition, the error listing of the COM2-E module provides the following error codes:

• Err1: 42 Identification TFTP error

Err2: 01 Illegal TFTP opcode

02 Illegal controller

03 Illegal operand

04 Illegal length

BOSCH Ethernet Job Listing 8–7

8 Ethernet Job Listing

The job listing is a local bus monitor which displays all protocol activities as well as all received and sent commands.

The Ethernet job listing is enabled via the connected terminal (PC with VTERM, Hyper terminal, XTALK, etc.) at the upper interface.

For protocol selection for the upper interface, the setting 'no protocol' must be switched on via the DIP switch S3.

The following keyboard entries are important:

Key	Function
Т	Switch on/off job listing
E	Switch on/off error listing, only possible if job listing is switched off.
0	Switch on/off message data output
D	Display format of Hex/String switch-over for string output
H, ?	Display of allowed key inputs
K, C	Display of the communicating stations, with AST commands
Α	Display of the external ARP table
В	Display of the bus parameters and statistics
Р	Display of the system modules
1	Input of the Internet address, e.g. 142.2.26.128
U	Input of the retransmission counter
Υ	Input of the retransmission timer
N	Input of the module name, string max. 31 characters
М	Display of the message that was output last

If listing is enabled, then the channel 0 for the V.24/20mA protocols BUEP19E, BUEP64, and BUEP03E is disabled.

Via this interface, the Ethernet protocol software then outputs test messages. Thus, the user can follow the communication process by connecting a terminal or a printer, which is a useful tool in the commissioning phase.

- The job listing function is only intended for usage during commissioning because it slows down the data traffic on the Ethernet interface significantly.
- The decimal point on the 7-segment display indicates that protocol data has been sent.
- As error messages, mostly Error Class and Error Code are output. The error and/or the cause of the error can be localized via the error message lists in the description of the R5CON module.

8–2 Ethernet Job Listing BOSCI

Numbers are mostly output in the hexadecimal number system.

Job Listing

Job listing is switched on and off with the T-button.

During switch-on and switch-off, error listing, too, is switched on and off with the T-button. If job listing is enabled, the middle segment at the upper 7-segment display of the COM2-E is activated.

Error Listing

Error listing is switched on and off with the E-button.

Error listing can only be switched on if job listing is switched off. If error listing is enabled, the lower segment at the upper 7-segment display is activated.

Message Data Output

With job listing, only client and server commands are output. In addition, the O-button is used for switching on and off the output of the message data.

The message data output is only effective if job listing is switched on.

List of Communicating Stations

Via the K- or the C-button, the list of communicating stations is output. This list contains the assignment of the Ethernet address to the IP address.

In addition, the list of communicating stations contains information about whether the list entry is free or reserved and for how long the entry is still going to be valid. The timer is set to the value of the retransmission timer by client jobs.

If an external communication station uses a password, 'attached' is displayed.

Example:

act. Serverlist

```
Ethadr: 00-60-34-00-08-1F IP-Adr: 142.2.26.144 Timer: 0 static Ethadr: 00-60-34-00-08-0B IP-Adr: 142.2.26.146 Timer: 0 static attached Ethadr: 00-60-34-00-08-0A IP-Adr: 142.2.26.145 Timer: 0 static Ethadr: AA-00-04-00-02-40 IP-Adr: 142.2.1.100 Timer: 52 used attached Ethadr: 00-00-0C-4E-58-0D IP-Adr: 142.2.1.102 Timer: 59 used
```

This list also shows the static part of the ARP table which is preset by the configuration file.

BOSCH Ethernet Job Listing 8–3

Bus Parameters

Via the B-button, the set bus parameters and an overview of the handled data traffic are displayed.

Example:

COM2-E name: Control_1

Ethernet address: 00-60-34-00-08-0B Internet address: 142.2.26.146

Retransmission counter: 16

Retr.Timer: 200 Constant retransmission

Subnet mask: 255.255.0.0 Default gateway 0.0.0.0

 AstKmd:
 00000527

 Rep-AstKmd:
 00000050

 Arp:
 00000009

 Icmp:
 00000001

 IP:
 001FE135

 Rep-Ip:
 0000002E

 OverrunCnt:
 00000000

AstKmd: Number of executed client jobs

Rep-AstKmd: Number of message repeats with these client jobs
Arp: Number of received ARP request messages
Icmp: Number of received ICMP requests (Ping)

IP: Number of received client jobs

Rep-lp: Number of message repeats with the received client jobs

OverrunCnt: Overruns in the Ethernet controller

Backplane Module Display

Via the P-button, the modules that have been recognized in the card rack are displayed.

Internet Address

Normally, the internet address is entered in the SK table of the controller. Older versions of the SK500 or the ZS400 though do not support this entry. If these modules are used, the IP address can be specified via the terminal.

The address must be entered in the following form: number.numbers.numbers.numbers

Editor utilities are:

Delete deletes the last entryReturn finishes the entry

• Escape aborts the entry without storing the entered data

Retransmission Timer / Retransmission Counter

These two values are normally specified by the configuration file. For commissioning or when working without the configuration file, the default values can be changed via a terminal.

Editor utilities are:

Delete deletes the last entryReturn finishes the entry

• Escape aborts the entry without storing the entered data

8–4 Ethernet Job Listing BOSCH

Module Name

The input of the module name is initialized with the N-button. The module name can have a maximum of 31 characters.

As characters, the ASCII characters >0x20 and < 0x7f are applicable.

Editor utilities are:

Delete deletes the last entryReturn finishes the entry

• Escape aborts the entry without storing the entered data

External ARP Table

The external ARP table can be output via the A-button. The Ethernet addresses of the network nodes that have established a connection with the COM2-E module are stored in this ring memory with 64 entries.

Example:

ARP requests:

IP: 142.2.42.96, Eth: 00-60-08-44-74-11 IP: 142.2.36.86, Eth: 00-60-08-34-91-30

BOSCH Ethernet Job Listing 8–5

8.1 Client Command

The command is activated through the PLC program. R5INIT is executed during startup. A command is activated with the R2REQ module.

Example:

Job 32, data module 14, read with 512 bytes; Communication partner is CL400.

Display:

- Id: 0020, Rd-Kmd: 44, High: 00F0, Low: 0000, len: 200, Erg: 000E, IP: 142.2.20.144
- 2. TX IP-Rq
- Receive-Data:
- 4. 34 45 56
- 5. Command finished

Reg. 1.:

Id: 0020
 Rd-Kmd: 44
 Command code (PST)
 Read command data module
 43 = DF, 44 = DM, etc.
 High: 00F0
 Address high part (PST)
 Block address
 Low: 0000
 Address low part (PST)
 Byte address, offset
 len: 200
 Number of bytes
 is calculated with data type and amount

Erg: 000E Command attribute (PST)
 Data module number

IP: 142.2.20.144
 IP address of the destination

Reg. 2.:

TX IP-Rq Transmit IP request

Command is sent via the bus

Reg. 3.:

Receive-Data
 Receive response message

Reg. 4.:

• 34 45 ... Received data

Reg. 5.:

Command finished Command has been executed and completed.

8–6 Ethernet Job Listing BOSCH

8.2 Server Command

A bus node requests data from the module or writes data. In the PLC program, this does not require a communication function module.

Example:

Data module 10, read with 512 bytes, read from ZS0.

Display:

1. Rx-Rd-Kmd: 44, High: 0000, Low: 0000, len: 200, Erg: 000A

2. Tx 0200 Byte

Reg. 1.:

•	Rx-Rd-Kmd: 44	Received command Read command data module 43 = DF, 44 = DM, etc.
•	High: 0000	Address high part Block address
•	Low: 0000	Address low part Byte address, offset
•	len: 200	Number of bytes is calculated with data type and amount
•	Erg: 000A	Command attribute Data module number

Reg. 2.:

• TX 0200 Transmit number of traffic channel bytes 512 bytes user data are sent

BOSCH Ethernet Job Listing 8–7

8.3 Error Messages

8.3.1 Client Error Messages

Error-free client commands are finished by:

Command finished

Faulty commands are finished by:

- Command aborted Errorcode: 3363; Buffer overflow, amount of data too large
- Rx IP-Rs BUEP-Error: Err1: 10, Err2: 00

Err1 corresponds to the error code in the error table.

Err1: 10 Err2: 0 = PST block address wrong

8.3.2 Server Error Messages

Error-free server commands display the received command only.

Errors that appear during the execution of the received command are output with the message:

• BUEP: Err1: 10, Err2: 00

This error message is also sent to the client.

Err1 corresponds to the error code in the error table.

Err1: 10 Err2: 0 = PST block address wrong

8.3.3 ICMP Error Messages

The ICMP signals (Internet Control Message Protocol) are generated by ICMP messages on the Ethernet.

Messages that are directly processed on the module:

- ECHO REPLY
- ECHO REQUEST
- REDIREKT

The other messages are indicated in the error output.

Errors that usually lead to a job abortion:

- DESTINATION UNREACHABLE
- TIME EXCEEDED
- PARAMETER PROBLEM

Туре	Code	Explanation
3		destination unreachable
	0	network unreachable
	1	host unreachable
	2	protocol unreachable
	3	port unreachable
	4	fragmentation needed but don't-fragment bit set
	5	source route failed
	6	destination network unknown
	7	destination host unknown
	8	source host isolated
	9	destination network administratively prohibited
	10	destination host administratively prohibited
	11	network unreachable for TOS (Type of Service)
	12	host unreachable for TOS
	13	communication administratively prohibited by filtering
	14	host precedence violation
	15	precedence cutoff in effect
4	0	source quench
9	0	router advertisement
10	0	router solicitation
11		time exceed
	0	time-to-live equals 0 during transit
	1	time-to-live equals 0 during reassembly
12		parameter problem
	0	IP header bad
	1	required option missing
13	0	timestamp request
14	0	timestamp reply
15	0	information request
16	0	information reply
17	0	address mask request
18	0	address mask reply

BOSCH Time Characteristics 9–7

9 Time Characteristics

The table below lists the typical duration of a service, if the COM2-E is used as a server:

Cycle time	Typical duration of a service	
1 ms	10 ms 30 ms	
40 ms	30 ms 60 ms	

These values can be used to determine the time characteristics within the network.

10 PLC Program Examples

10.1 Function Module

Below you find an example of a function module for reading out via Ethernet a data module. The parameters are generated dynamically in a DM. All auxiliary variables are located in this DM as well. After the DM has been read in, a counter variable is incremented and a new reading job is started.

```
; Reading a DM via Ethernet
; Parameter handling in a work DM
;Loop counter
   W MO,A
INC W A,1
    W A,MO
Т
    W A,A0
; Mini state machine for communication, state in M10
L W M10,A
CPLA W 16#0,A
                           ;0 = Initialization
JPZ COM_Init
CPLA W 16#1,A
                           ;1 = Send job
JPZ COM_Request
CPLA W 16#2,A
JPZ COM_Confirm
                           ;2 = Check whether job has been executed
;Check error messages
COM_Init:
                    -DM0
DMO BA
;Delete all auxiliary variables
XO W A, A
    W A,M12
Τ
Т
   W A,M14
Т
   W A,M16
    W A,M18
    W A,M20
; Next state is request
   W 16#1,A
L
    W A,M10
Τ
EM
COM_Request:
L W M12,A
INC W A,1
    W A,M12
                           ;Request counter
```

;Error

```
FC0 BA
               -R2REQ,6
                         ;1 job in DMO up front or Offset = 0
                         ;+----+
                         ; | ANY VAR_IN_OUT | Data range for
ΡO
  W 16#44
                         ;
                                              | protocol parameters 44=DM
                                VAR_IN_OUT | Data module number
VAR_IN_OUT | Offset
  W O
                         ; ANY
Ρ1
   W O
                         ; | ANY
P2
                         ; ANY
    W 16#0001
                                  VAR_IN_OUT | Job bit bar
Р3
    W M14
                                   VAR_IN_OUT | error message of the FM
Ρ4
                         ; ANY
                                   VAR_IN_OUT | Result bit bar
    W M16
Р5
                         ; ANY
; Error handling:
DMO BA
                   -DM0
                         ;Error message of the FM
L
  W M14,A
L
    W D0,B
                         ; Error message DWO of the communication parameters
L W M16,C
                         Result bit bar
CPLA W 0,C
JPZ no_Req_Err
; Now an error has occurred and the error message of the FM and the DWO of the
communication parameter has to be checked
L
    W 4,A
Т
    W A,M10
EM
no_Req_Err:
L W 2,A
                        ;everything OK next state = Confirm
    W A,M10
Т
EM
COM_Confirm:
;Load parameter for confirm module from DMO
DMO BA -DMO
    W D2,A
                         ;Rss - Channel No.
L
Т
    W A,M20
   W D4,B
                         ;Job number
T.
Т
   W B,M22
FC1 BA -R2CON,5
                         ;+----+
P0 W M20
                         ; ANY VAR_IN_OUT | RSS and channel number
P1 W M22
                         ; ANY
                                  VAR IN OUT | Job number
  W M24
                                  VAR IN OUT | Processed job number
P2
                         ; ANY
                                  VAR_IN_OUT | Status of the processed job #
P3
   W M26
                         ; ANY
                                VAR_IN_OUT | Error message of the FM
Ρ4
  W M28
                         ; ANY
   W M26,A
                         ;Status of the processed job number
U W 16#FF00,A
CPLA W 16#100,A
                         ;100 = Job in progress
JPZ
       Job_wait
CPLA W
       16#200,A
                         ;200 = Job in progress
JPZ
       Job_wait
CPLA W
       16#000,A
                       ;000 = Job finished
JPZ
       Job OK
```

BOSCH PLC Program Examples 10–3

L W 16#5,A T W A,M10

;next state is error

EM

Job_OK:

L W 16#1,A T W A,M10

next state is new request;

Job_wait:

EM

10.2 Symbol file

```
; ------
; +---- Type of module in the controller
   +---- RAM/EPROM indication (R/E), RAM is default
    +---- Symbolic module name on the disk
OM1,ROM1; Cyclic program processing
;OM2,R OM2CL200; Initialization table
;OM5,R OM5; Startup module after power-on
;OM7,R OM7; Startup module after Stop/Run
;OM9,R OM9; Error module
;OM10,R OM10; Interrupt module, Interrupt input 0, priority 1
;OM11,R OM11; Interrupt module, Interrupt input 1, priority 2
;OM12,R OM12; Interrupt module, Interrupt input 2, priority 3
;OM18,R OM18; Time controlled module, grid definition statically in OM2
    ; or to the runtime via the system area S10 (Priority 1)
;OM19,R OM19; Time controlled module, grid definition statically in OM2
       ; or to the runtime via the system area S12 (Priority 2)
; -----
; Function Call Modules FC0 to FC255
; (corresponds to PBO - PB255 of the professional version under DOS)
;FC0,R FC0
FC0, RR2REQ
FC1, RR2CON
; ...
; FC255, R FC255
; *** BEGIN SFC program module ***
; automatically generated AS entries.
; This area must not be changed!
; *** END SFC program module ***
; ------
; Data modules DMO to DM255
; The data module lengths are defined in the respective DM's.
DM0,RDM0
DM1,RDM1
; ...
; DM255, R DM255
; *** BEGIN SFC data module ***
; automatically generated AS entries.
; This area must not be changed!
; *** END SFC data module ***
; From here on, all further operands follow in any order.
; For bit access and word access different symbols with a max. length of 32
; characters can be assigned, e.g.:
; {\tt E2} WORT_SYMBOL ;Symbol for byte, word and double word access
; E2.0 BIT_SYMBOL ;Symbol for bit access
```

```
; *** BEGIN SFC symbols ***
; automatically generated AS entries.
; This area must not be changed!
; *** END SFC symbols ***

; *** BEGIN SFC branch marker ***
; automatically generated AS entries.
; This area must not be changed!
; *** END SFC branch marker ***
```

10.3 Job Parameters in the Data Module

One parameter field for one reading and one writing job of a data module. These parameters are added to the request module R2REQ as job parameters.

```
; Data Module File
LENGTH=512
                          ;Length of the data module in bytes
                   16#0 ;**** Read-DF0 to DM1 Command *****
   UINT
               16#0201 ;RSS and channel number
2
    UINT
4
    UINT
                 16#0060 ;Job number
   UINT
6
                 16#4500 ;P3 type of command (45=E) / type of operand (00=Byte)
   UINT
8
                 16#4443 ;P4 command code AST (44=DM, 43=DF) / Com. PST
                         ; (44=DM, 43=DF)
10 UINT
                      1 ;P5 command attribute AST (DM no./data field no.)
              16#0000 ;P6 block address AST
12 UINT
14
  UINT
                   16#0 ;P7 byte offset AST
16
  UINT
                16#FFFF ;P8 command attribute PST (DM no./ DF no.)
                         at DF always 16#FFFF;
18
   UINT
                   16#0 ; P9 block address PST
20
                  16#0 ;P10 byte offset PST
  UINT
22
                         ;P11 amount of data according to type of data
  UINT
                    512
   UINT
                 16#05ff
                         ;P12 process coordination point/
                          ;field coordination marker
                          ;05=EP or Stop / FF = w/o field coordination marker
    ISTRING"142.2.26.175"
                          ; IP address of the communication partner 142.2.26.175
26
                           ; (different representation:
                           ;OSTRING(4) <8e><02><1a><88>)
30
    UINT
                       0
                          ;free
32
   UINT
                   16#0
34
    UINT
                   16#0
   UINT
36
                   16#0
   UINT
38
                   16#0
   UINT
40
                   16#0
42 UINT
                   16#0
44 UINT
                   16#0
46 UINT
                   16#0
48 UINT
                   16#0
50 UINT
                   16#0
52 UINT
                   16#0
54 UINT
                   16#0
56 UINT
                   16#0
58 UINT
                   16#0
60 UINT
                   16#0
62 UINT
                   16#0
```

BOSCH Annex A-1

A Annex

A.1 Abbreviations

Abbreviation	Explanation	FM	Function module
ABL	Job bit bar	ICMP	Internet Control Message Protocol
AKM	Process coordination marker	OM	Organization module
AST	Requesting station (Client)	PE	Protective Earth
BUEP	Bosch transmission protocol	PLC	Programmable Logic Controller
BUEP-E	Protocol for secure data transmission	PST	Peripheral station (Server)
BUEP03E	Freely configurable transmission proto-	PW	Parameter word
BUEP19E BUEP64	col Protocol for secure data transmission Transmission protocol 3964R	R2CON	Function module for communication of the PLC interface access (for controlling centralized jobs)
DB DF	Daten buffer Data field	R5INIT	Function module for communication of the PLC interface access (creates infor- mation tables)
DM DW	Data module Data word	R2REQ	Function module for communication of the PLC interface access (activates a command)
EBL	Result bit bar	RSS	Computer interface
EEM	Electrostatically endangered modules	STP	Shielded Twisted Pair
EP	End of program	TFTP	Trivial File Transfer Protocol (simple communication possibility for PC or UNIX computer with the controller)
ESD	Electrostatic discharge Abbreviation for all terms that concern		
	electrostatic discharges; e.g. ESD protection, ESD danger	ZS	Central unit
FKM	Field coordination marker		

A-2 Annex BOSCH

A.2 Index

Numbers	1		
7-segment display, 2-2	ICMP, 8-7, 10-1		
	Input parameters, 4–2, 5–2		
A	P0, 4–2, 5–2		
ABL, 4–3, 4–5, 10–1	P1, 4–2, 5–2		
AKM, 10–1	P2, 4–2		
AST, 6–1, 6–5, 6–6, 6–15, 10–1	P3, 4–3		
В	Intended use, 1–1		
Backplane module display, 8–3	Internet address, 2–12, 8–3		
BUEP, 10–1	J		
BUEP-E, 6–1, 10–1	Job listing, 8–2		
BUEP03E, 10–1	Job number, 6–4		
BUEP19E, 6–1, 10–1			
BUEP64, 10-1	L		
Bus parameters, 8–3	List of communicating stations, 8-2		
	Low-Voltage Directive, 1-1		
C			
Channel number, 6–4	M		
Configuration file, 2–13	Measuring or testing procedures, 1–5		
n	Message data output, 8–2		
D DB, 10–1	Module name, 8–4		
DB, 10–1 DF, 10–1	0		
DM, 10–1	OM, 10–1		
Documentation, 1–7	Output parameters, 4–4, 5–3		
DW, 10–1	P2, 5–3		
DW0, 4-6	P3, 5–3		
DW1, 4–6	P4, 4–4, 5–4		
DW2, 4-6	P5, 4–4		
F	D.		
E	P		
Earthing wrist strap, 1–6 EBL, 4–4, 4–5, 10–1	Password, 6–18 PE, 10–1		
EBM, 1–6, 10–1	PLC, 10–1		
Electrostatically endangered modules, 1–6	reaction, 6–3		
EMC directive, 1–1	PLC Interface, 3–1		
Emergency-OFF devices, 1-5	PLC program examples		
EP, 10–1	Function module, 10–1		
Error code, 6–3	Job parameters in the data module, 10-6		
Error listing, 8–2	Process coordination marker, 6-8		
Error messages, 8–7	PST, 6-1, 6-5, 6-6, 6-7, 10-1		
Error class, 6–14	PW, 10-1		
Error code, 6–14	PW1, 6–3		
PLC reaction, 6–14	PW2, 6–4		
ESD, 10–1	PW3, 6–4		
ESD protection, 1–6			
ESD work stations, 1–6	Q Qualified personnel, 1–2		
Ethernet address, 2–12 Ethernet job listing, 8–1	Qualified personner, 1–2		
Ethernet job listing, 6–1	R		
F	R2CON, 3–1, 5–1, 10–1		
Field commands, 6–10	R2REQ, 3–1, 4–1, 10–1		
Field coordination marker, 6–8	R5INIT, 10–1		
FKM, 10–1	Retransmission counter, 8–3		
FM, 10–1	Retransmission timer, 8–3		
	RSS, 5-2, 10-1		

BOSCH Annex A-3

S

S1, 2–6 S2, 2–6, 2–8 S3, 2–6, 2–7, 2–8 Safety instructions, 1–4 Safety markings, 1–3 Spare parts, 1–5 Special commands, 6–11 STP, 10–1

Т

TFTP, 10–1 TFTP protocol, 7–1 Trademarks, 1–7

٧

V.24/20mA, 2-1, 2-2, 2-20

Ζ

ZS, 10-1

A-4 Annex BOSCH

Bosch Automation Technology

Australia

Robert Bosch (Australia) Pty. Ltd. Head Office Cnr. Centre - McNaughton Roads P.O. Box 66 AUS-3168 Clayton, Victoria Fax (03) 95 41 77 03

Great Britain

Robert Bosch Limited Automation Technology Division Meridian South Meridian Business Park GB-Braunstone Leicester LE3 2WY Fax (01 16) 289 2878

Canada

Robert Bosch Corporation Automation Technology Division 6811 Century Avenue CAN-Mississauga, Ontario L5N 1R1 Fax (905) 5 42-42 81

USA

Robert Bosch Corporation Automation Technology Division Fluid Power Products 7505 Durand Avenue USA-Racine, Wisconsin 53406 Fax (414) 5 54-81 03

Robert Bosch Corporation Automation Technology Division Factory Automation Products 816 East Third Street USA-Buchanan, MI 49107 Fax (616) 6 95-53 63

Robert Bosch Corporation Automation Technology Division Industrial Electronic Products 40 Darling Drive USA-Avon, CT 0 60 01-42 17 Fax (860) 4 09-70 80

We reserve the right to make technical alterations

Your concessionary

Robert Bosch GmbH Geschäftsbereich Automationstechnik Antriebs- und Steuerungstechnik Postfach 11 62 D-64701 Erbach Fax +49 (0) 60 62 78-4 28